| 1 (a) | 1 antennae ; <br> 2 elongated bodies; <br> 3 segmented body/many segments ; <br> 4 many ( $\geqslant 10$ ) legs; <br> 5 (one or two pairs of) legs on each segment ; <br> 6 exoskeleton; <br> 7 jointed legs ; | max [3] |
| :---: | :---: | :---: |
| (b) | 1 length of antennae ; <br> 2 number of sections on antennae; <br> 3 presence/absence, of tail pieces/AW ; <br> 4 length of tail pieces ; <br> 5 length of legs ; <br> 6 number of leg joints; <br> 7 total number of legs ; <br> 8 position of legs on body ; <br> 9 number of legs per segment; <br> 10 size/shape of segments; <br> 11 number of body segments; <br> 12 length of body; <br> 13 head shape; <br> 14 presence/absence 'spots/markings' ; | max [3] |


| 1 (c) (i) | nucleus ; | [1] | Ignore chromosomes |
| :---: | :---: | :---: | :---: |
| (ii) | 1 idea that animals are identified accurately ; R identify unqualified <br> 2 barcoding is, cheap/easy/quick/efficient; <br> 3 barcoding is useful if distinguishing characteristics/dichotomous key are difficult ; <br> 4 identify previously unknown species; <br> 5 helps to identify, threatened/endangered species; | max [2] |  |
| (ii) | 1 ref to genes; <br> 2 codes for (specific) proteins ; <br> 3 stores genetic information ; <br> 4 can be copied to pass on information to new cells ; | max [2] |  |
| (d) (i) | 1 all arrows point from food to feeder; <br> 2 millipedes eat dead leaves and fungi ; <br> 3 food chain : bacteria $\rightarrow$ nematodes $\rightarrow$ springtails $\rightarrow$ centipedes; <br> 4 centipedes eat millipedes, springtails and earthworms ; | [4] |  |
| (ii) | 1 ref to, respiration/decomposition; <br> 2 release carbon dioxide; <br> 3 carbon dioxide is taken in by, plants/photosynthesis; | max [2] |  |
|  |  | [Total:17] |  |


| Question |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 2 (a (i) | 1 concentration of PCBs increases up the food chain/ora; <br> 2 concentration is much higher in larger organisms/ora; <br> 3 big(gest) increase between herring and porpoise; <br> 4 (only) herring/porpoise/animals at top of food chain, have a range of concentrations; <br> 5 use of figures (arbitrary units) to make a comparison between two, trophic levels/organisms; | max 3 | MP4 must be a qualitative statement, not just statement of figures <br> MP5 - must be a comparison not just figures unqualified, e.g. use of 'but', 'and', 'only', etc. and accept $\times 1.8 / 2, \times 4, \times 30, \times 384, \times 1900$ |
| (ii) | animals at higher trophic levels live longer; eat many of the animals below them in the food chain; PCBs cannot be, excreted/eliminated/removed/broken down; so build up in the body (tissues); bioaccumulation/biomagnification; | max 3 |  |
| (b) (i) | mutation/change in DNA; <br> any mutagen; <br> gene(s) code for, AHR/protein; <br> any sensible suggestions about change to protein molecule; <br> fish susceptible to PCB poisoning died; <br> fish with changed protein survived and reproduced; <br> passing on mutant allele; <br> reference to (natural) selection; | max 5 | A ref to genetic variation $\mathbf{R}$ AHR/protein, mutates e.g. radiati <br> e.g. different amino acid sequen |
| (ii) | fish with mutant allele not at an advantage/no selection for PCB resistance; <br> PCB resistant fish may not compete well with others/ora; so less successful at breeding/ ora; leave fewer offspring/ ora; idea that mutant allele is diluted as fish interbreed; | max 2 | A 'the altered AHR protein is of less/no use' |


| Question |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 2 (c) | 1 persistent/does not breakdown/accumulates; <br> 2 fill up/takes up space in, landfill sites/rubbish dumps; <br> 3 suffocate/choke, animals; <br> 4 kills animals that get trapped in it; <br> 5 release, toxins/poisons; <br> 6 AVP; | max 3 | MP1 A 'can't get rid of them'/takes a long time to breakdown <br> MP3 and MP4 do not allow kill unqualified <br> MP5 maybe in context of leaching out, burning or eating <br> I references to recycling I pollution unqualified <br> - (fill with water to become) breeding grounds for mosquitoes <br> - blocks light for, photosynthesis <br> - negative effect on tourism/visual pollutant <br> - blocks drains <br> - blocks flow of water in, rivers/streams <br> - reduces soil, drainage/aeration <br> - interferes with water treatment <br> allows spread of alien species in the oceans |
|  |  | [Total: 16] |  |


| Question | answers | Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 3 (a) | there are different forms of one, feature / characteristic ; example of a feature shown by Soay sheep ; <br> coat / fur, colours <br> patterns of coat / AW <br> with and without horns <br> lengths of horns <br> ear, length / width / size / shape <br> face, length / width / size / shape <br> body mass <br> body shape / body size / AW | [2] | look for a general explanation of 'variation in their phenotype' and an example <br> the example chosen does not have to be visible in Fig. 6.1 |
| (b) (i) <br> 2 3 | in years with high populations of sheep <br> more deaths in total ; A low survival rate <br> for all sizes of lambs <br> more lambs died than survived; <br> any comparative data quote using same body mass in high and low <br> population years - units (kg) are not necessary <br> A tolerance given in table for bars between gridlines | [max 2] | looking at sum total of the bars in each graph <br> looking at bars for each body mass <br> e.g. lambs 13-14 (kg), 106 died in hi population year against 12 that died in low population year <br> see page 18 for table of data |


| Question | answers | Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| (ii) <br> 1 <br> 2 <br> 3 4 5 <br> 6 7 <br> 9 10 | in high population - ora for low population one mark for competition and two marks for marking points 2-11 <br> competition for, shelter / food / grass / resources ; <br> as a result of competition there is shortage of food for each lamb ; <br> as a result of competition for food <br> lambs do not store enough fat ; <br> ref insulation; <br> cannot survive the winter ; <br> ewes / females, produce less milk; ref to number of lambs per female; ref to, more likely to die of disease / AW ; <br> A disease more likely to spread more small lambs die ; <br> (pregnant) ewes / females, are short of food | [1] <br> [max 2] | ignore explanations about why the population is high in some years and low in others - not relevant <br> $\mathbf{R}$ competition for mates |


| Question | answers | Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 3 (c) <br> 1 2 <br> 3 <br> 4 <br> 5 <br> 8 | note that this is not a question about artificial selection <br> variation / AW, among the sheep in the population; some are better, adapted / suited / AW, than others; A 'best adapted' <br> any example of an adaptive feature for survival in the extreme conditions ; <br> any example of an appropriate selective agent ; <br> ignore 'extreme conditions / weather' <br> survive and, breed / have offspring; A ora <br> pass on their alleles ; <br> idea that <br> over time better adapted, features / traits, become more common; | [max 4] | points need to be in correct sequence and in the context of selection <br> $\mathbf{R}$ better animals survive unqualified by adaptation or some example <br> 'some sheep have thicker coats' = MP1 and MP3 <br> MP3 must be a feature related to survival in extreme conditions, not 'strength', 'fitness' 'healthiness' etc <br> to survive the cold = MP4 |


| body mass / kg | Iow population years |  | high population years |  |
| :---: | :---: | :---: | :---: | :---: |
|  | died | surv | died | surv |
| 3-4 | 0 | 0 | $\begin{aligned} & 6 \\ & (5-7) \end{aligned}$ | 0 |
| 5-6 | 0 | $\begin{aligned} & 2 \\ & (1-3) \end{aligned}$ | $\begin{aligned} & 15 \\ & (14-16) \end{aligned}$ | 0 |
| 7-8 | 0 | $\begin{array}{\|l} 7 \\ (6-8) \end{array}$ | 20 | (2-4) |
| 9-10 | $\begin{aligned} & 5 \\ & (4-6) \end{aligned}$ | $\begin{aligned} & 16 \\ & (15-17) \end{aligned}$ | 56 | (5-7) |
| 11-12 | $\begin{aligned} & 12 \\ & (11-12) \end{aligned}$ | 48 | (93-95) | $\begin{aligned} & 25 \\ & (24-26) \end{aligned}$ |
| 13-14 | $\begin{aligned} & 12 \\ & (11-12) \end{aligned}$ | $\begin{aligned} & 57 \\ & (56-58) \end{aligned}$ | $\begin{aligned} & 106 \\ & (105-107) \end{aligned}$ | $\begin{aligned} & 30 \\ & (29-31) \end{aligned}$ |
| 15-16 | $\begin{aligned} & 12 \\ & (11-12) \end{aligned}$ | 52 |  | $\begin{aligned} & 34 \\ & (33-35) \end{aligned}$ |
| 17-18 | $\begin{array}{\|l} 6 \\ (5-7) \end{array}$ | $\begin{aligned} & 22 \\ & (21-23) \end{aligned}$ | 16 | (17-19) |
| 19-20 | $\begin{aligned} & 2 \\ & (1-3) \end{aligned}$ | 12 | $(5-7)$ | $\begin{aligned} & 2 \\ & (1-3) \end{aligned}$ |
| 21-22 | 0 | 0 | $\begin{aligned} & 2 \\ & (1-3) \end{aligned}$ | 0 |

